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themselves could be used for stereo matching. The results are compared with
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1. S ummary

Depth information can be derived from a number of different cues (stereo, shading, texture
and motion, to name a few). Possible types of interaction include accumulation, veto,
cooperation, disambiguation, etc. To distinguish between these interactions experimentally,
we studied the depth perceived from computer generated images (smooth- or flat-shaded
ellipsoids of revolution with different elongations along the viewing axis) containing different

combinations of depth cues. The cues could be either consistent or contradictory. Perceived
4. depth was measured by interactively adjusting a depth probe to the surface of the ellipsoid.

Depth perception is almost correct when disparity information can be derived from the
relative locations of intensity edges in stereo images. If edges are missing, as in a smooth-
shaded sphere, stereo depth information can still be derived from the image intensities

ON themselves. If shading is the only information available, the perceived depth may be as low
as 30% of the correct depth and is almost independent of the elongation. From this we can

*draw the following conclusions:

(1) The more information is available, the larger is the perceived depth (accumulation). It
increases in the following sequence of cues: shading, stereo without edge information,
stereo with edge information.

(2) Since the perceived depth of non-disparate flat-shaded surfaces is zero, we may conclude
that edge-based stereo overrides shading (veto).

(3) If no intensity edges are present, depth can still be derived (intensity-based stereo).

- (4) Intensity-based stereo cannot be due to intensity peak matching alone. It performs best

in the vicinity of the peak but uses distributed information as well (patch correlation).

Both integration of depth modules and binocular shape-from-shading are compared to
'6 recently developed ideas in computer vision (intensity-basd stereo matching and Markov

Random Fields).
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2. Introduction

Ti, problem of deriving a description of a three-dimensional scene from its two-dimensional
ii::>,'n5 on the retina is the inverse of classical optics, wherein one has to find the two-

,!i: c .Iml image (brightness distribution) of a three-dimensional object. W~hile the optics

pr)Ieil can be solved straightforwardly, the inverse problem is much harder to attack

,, , .i"nique solution does not always exist. Furthermore the solution has to be stable.

i., dopend continuously on the image intensities. Computational studies have provided

in recent years promising, although far from complete, theories of the processes necessary

to -olve tie ill-posed problem of deriving a three-dimensional scene description from two-

dimensional images. It has become clear that a single module is not sufficient to solve
this problem. Stereo and motion algorithms, for example, can work well under laboratory-

controlled conditions (random dot stereograms and moving sinewave patterns), but quite

often make severe errors under more natural conditions where specularity, inhromogeneous

illm inations, and occlusion are common. We therefore argue that the analysis of the
information processing involved should rely on complex natural images rather than non-

complex synthetic images.

2.1. Complex vs Non-Complex Images

The human visual system extracts 3-D information much more reliably for complex natural

images than for non-complex synthetic images. For example it can analyze complex shapes

in a natural scene under quite different viewing conditions but produces often ambiguous
solutions for simple line drawings like the Necker cube. Similar observations can be made for

other vision modules like color, stereo and motion. Many illusions occur when only single or
a fcw,% cms are available but are rare in complex natural situations because the interaction of

different cues can avoid false interpretations. In psychophysics, the study of this interaction

can be facilitated by the use of computer graphic systems which allow convenient control

of different cues in complex synthetic images. Shading, for example, can be computed for

*arbitrary objects. and ray-tracing and texture mapping techniques allow the computation

o)f si thet It Images of three-dimensional scenes which cannot be distinguished from natuiral
i11iii e, ( photographs).

\ lost studies of deptlth cues. bti ill psychophysics and in computer vision, deal witi
Il,,' 1,,'11st1rtioml of a t hree-dimeusional scene from one isolated cue, the inost intensively

-" ,lt,'l oie 1,eing stereo (for cxaxiploh Jiulsz 1971, Marr & Poggio 1979, Mayhew & Frisbv

-9S 1). From the computational point of view, there also exist a number of studies on how

t, ,v;iliiate texture information (lrajcsy & Lieerinan 1976. Kender 1979. Wii kin 1981.

Ientlan(d 19S6). shading (Koen(Ierink & van Dorn 1980. Ikeiichi & Horn 1981, Pentlan I

19$4 I ;!( iiiotion (Bra nisteiii 1976. Vll;nii 1979. Hilh 'it 1983) Ther, is. however. littl'.

N%
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0. knowledge of how the information from these cues can be integrated by the human visual

system.

2.2. Classification of Depth Cues

Three types of cues may be distinguished from the large number of cues from which depth

information may be inferred (for review see Braunstein 1976):

" Primary depth cues that provide "direct" depth information, such as convergence of

the optical axes of the two eyes, accommodation, and unequivocal disparity cues.

* Secondary depth cues that may also be present in monocularly viewed inages. These

include shading, shadows, texture gradients, motion parallax, kinetic depth effect, oc-

. clusion, 3D-interpretation of line drawings, structure and size of familiar objects.

" Cues to flatness, inhibiting the perception of depth. Examples are frames surrounding
pictures, or the uniform texture of a poorly resolving CRT-monitor.

In the scope of computational vision, an alternative approach to a classification of depth cues
could rely on the observation that different cues require a different amount of preprocessing.
For example, convergence and accommodation can be evaluated straightforwardly, whereas
stereo disparity requires the previous extraction of some matching primitives from the image.

To evaluate occlusion or the apparent size of familiar objects, even more preprocessing is
required. In a complex scene, an object may be detected by a disparity discontinuity. Once it

is defined, it may appear to be partly occluded by other objects and thus depth information
would be gained from a higher level scene description. Only recently, attempts have been

made to find general strategies for the integration of all this information in computer vision,
e.g., by Poggio and Gamble (see Poggio 1987).

2.3. Interaction of Depth Cues

In principle, there are several types of possible interactions between different depth cues,
which are not mutually exclusive:

* * Accumulation: Information from the different modules could be accumulated in a way
similar to the (ion-linear) summation known from spatial frequency channels (proba-

bility summation).

e Veto: There can be unequivocal information from one cue that should not be challenged

: by others. In general prinmary depth cues should override seconlary depth cues.

* Cooperation: Especially in the case of poor or noisy cues, the module.s might work

syzergi tically.

-:,
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* Disambiguation: Information from one module can be used locally to disambiguate
a r'presentation derived from another module. Also, a global ambiguity of depth-order
(convex-concave) can occur from cues like shadows or kinetic depth (Braunstein et al.
19S6).

* Hierarchy: Information derived from one cue may be used as raw data for another
t011(1.

2.4. Representation of Depth

In principle, there are many different ways to represent depth information. The most
straightforward way is to produce a depth-map of all Lhe points in the field of view. An-
other way is to segment the scene into distinguishable objects and describe the shape of
the objects in more abstract terms. For the latter way, different approaches ha'c been
tried in the last decade. For example, Marr (1978, 1982) proposed the 2'D-sketch which
includes rough distances to surface patches as well as their orientations, and Koenderink &
van Doorn (1979, 1980) used the tools of differential geometry and related their ideas to
Gestalt theories of perception.

For a psychophysical approach to these questions, we studied the depth perceived from
computer generated images containing different combinations of depth cues. The shading
and stereo cues could be either consistent or contradictory. In contrast to other studies of
shape perception (Todd & Mingolla 1983, Mingolla & Todd 1986), we did not try to describe
the shape by measuring the surface orientation of the displayed objects, but rather tried to

infer the shape from direct depth measurements of the surface of the objects. This was done
interactively by adjusting a depth probe to the surface of an ellipsoidal object as described

in the next chapter.

3. Methods

3.1. Computer Graphic Psychophysics

SIiittges. of -,iiiooth-shaded ellipsoids and flat-shaded polyhedral ellipsoidal objects were gen-

,C,.':" ,ratel ,v iay tracing techiniques or with a solid modeling software package (S-Geometry,
Sy-i,,,olics Inc.). The smooth objects were ellipsoids of revolution, the axis of revolution
bing perpedicukar to the display screen, i.e., the objects were viewed end-on. Textures
aiil siniple figures could be mapped onto the srface. The polyhedral objects were derived

fini qadiangilar tesselati(,ns of tli sphe.re, alhngi meiridii and latitidt circles. These were

.t4
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elongated along an axis in the equatorial plane, the axis of elongation again being perpen-
" ,) dicular to the display screen. Thus, the two types of objects differed mainly in the absence

or presence of edges. As compared to spheres, the objects were elongated by the factors

0.5, 1.0, 2.0, or 4.0. With an original radius of 6.67 cm, this corresponds to depth values
between 3.33 and 26.68 cm. In the following, all semi-diameters will be given as multiples
of 6.67 cm.

The imaging geometry used in the computations is shown in Figure 1. It differs from
the usual camera geometry in that the image is constructed on a screen which is not per-

pendicular to the optical axis of the eyes. Note that the imaging geometry, and therefore
the image itself, does not depend on the fixation point as long as the nodal points of the
two eyes remain fixed at the positions el and er, respectively. Images were computed for
a viewing distance of 120 cm and an interpupillary separation of 6.5 cm. When a point 10
cm in front of the center of the screen is fixated, Panumn's fusional area of ±10 min of arc
corresponds to an interval from 4.3 cm to 15.2 cm in front of the screen.

' . CRT-Screen x P' P1.

47

;Er

Figure 1 Ima.ging geometry. Projection onto the x-z-plane. Viewing distance is 120 cm. eI,er:
nodal points of the left and right eye. respectively. The distance between el and er is 6.5 cm. A
point p E R3 is imaged at p' for the view from the left eye and at p' for the view from the right
eye.

For the computation of the smooth-shaded ellipsoids, a ray-tracing operation was performed.
,Ve write the equation of the ellipsoid as

x 1'Ax 1, A = 0 b- 2  0 (I)
".. . \. 0 0 C- 2



where a, b, c denote the semi-diameters. With a = b = 1, we have an ellipsoid of revolution.
For a ray from e to p',

x = e + p(p' - e), L E R + , (2)

the ray-tracing amounts to the solution for p of the quadratic equation:

(e + p(p' - e))T A (e + p(p' - e)) = 1. (3)

The image intensity at point p' was computed from this solution for an ideal Lambertian
s;urface illuminated by parallel light from the z-direction. Note that for a point x on the
surface of the ellipsoid xTAx = 1, the surface normal is simply Ax/lAxJi. The viewing
direction and the axes of illumination and of revolution of the ellipsoid were aligned. Since
our objects were convex, no cast shadows or repeated scattering had to be considered.

3.2. Experimental Procedure

We displayed either a pair of disparate images or one single (monocular) view of the object
as seen from between the two eyes on a CRT Color Monitor (Mitsubishi UC-6912 High-
Resolution Color-Display Monitor, Resolution (H x V) 1024 x 874 pixels; bandwidth +3dB
between 50 Hz and 50 MHz, short persistence phosphore). The disparate images were
interlaced (even lines for the left image and odd lines for the right image) with a frame
rate of 30 Hz. Both disparate and monocular images were viewed through shutter glasses
(Stereo-Optic Systems, Inc.) which were triggered by the interlace signal to present the
appropriate images only to the left and right eye. The objects were shown in black and

white with a resolution of 254 gray-levels. The background was colored in half saturated
blue.

Perceived depth was measured by adjusting a small red square-shaped (4 by 4 pixel)
depth probe to the surface interactively (with the computer mouse). This probe was dis-
played in interlaced mode together with the disparate images. Thus, the accommodation
was the same for viewing both the surface and the probe. Measurements were performed at
45 vertices of a cartesian grid in the image plane in random order. The initial disparity of
the depth probe was randomized for each measurement to avoid hysteresis effects. Subjects
were asked to move the cursor back and forth in depth until it finally seemed to lie directly
on top of the displayed ellipsoidal surface. After some training, subjects felt comfortable
with this procedure and achieved reproducible depth measurements. All stimuli were viewed
binocularly. Subjects included the authors (corrected vision) and one naive observer.

3.3. Data Evaluation

The above procedure leads to a local depth map at 45 positions in the image plane. To obtain
more global measures of perceived elongation and shape, we first performed a principle
c,111plexnct analysis on all data sets. treating each one as a point in 45-space. Variance of

2k
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,N ;. the perceived shapes was found mainly (0.95) along two principal axes. In Figure 2, these
are shown together with two analytical surfaces which allow an appropriate interpretation
of these components. The first principle component is very close to an ideal ellipsoid (or
sphere) which appears in Figure 2c. A model of the second principle component is derived
from the depth gradient of the sphere which, in cylindrical coordinates, is z = r/v' F-r2.
This 45-vector is orthogonalized (Gram-Schmidt) with respect to the sphere. The result is
shown in Figure 2d; it provides a reasonable fit of the second component. In what follows,
we will use this theoretical frame derived from the ellipsoids depth and depth gradient rather
than the actual principle components. The corresponding coefficients will be called perceived
elongation and deformation, respectively. Since they are derived from all 45 measurements of
a set, their scatter is very small. The results were confirmed by other methods of evaluation,
such as computing a least squares fit of an ellipsoid to the data.

It can be seen from the eigenvalues associated with the principle components (AI = 0.94,
A2 = 0.01) that the main difference of the perceived surfaces is in their elongation rather
than in their shapes. This is partly due to the fact that stimuli with different elongations
were used in the first place. Slight variations in the deformation will be discussed later.

4. Results

Four different image types were tested:
" Flat-shaded ellipsoid with disparity and edge information (D+E + )

* Smooth-shaded ellipsoid with disparity but without edge information (D+E--

. Flat-shaded ellipsoid without disparity but with edge iniformation (D-E + )

* Smooth-shaded ellipsoid with neither disparity nor edge information (D-E-).

Each image type was tested for four different elongations (0.5, 1.0, 2.0, 4.0). The subjects
did not know the elongation of the displayed objects. Altogether, 253 measurements were
performed, each consisting of 45 adjustments of the depth probe to the perceived surface.

Results were consistent in all three subjects, with differences mainly in the standard devi-
ation. The 16 plots of Figure 3 show the averaged results of all subjects for the four types
of experiments and the four different elongations.

4.1. Accumulation of Depth Information

TI' p1ccivd hlngation iII the con istent images (,'lcnds on th amniount of informationz
available. As can be seen from Figure 4, the perceived elongation is almost correct when
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PRINCIPLE COMPONENTS

ANALYTICAL SURFACES

C d

Figure 2 Classification of the perceived surfaces. ab. Principle components. a. First component,
A1 = 94%. b. Second component, A2 = 1.4%. c,d. Analytical surfaces that can be used to interpret
the principle component data. c. An ideal ellipsoid is almost identical to the first component. The
associated coefficient is used as a measure of the perceived elongation. d. The depth gradient of the
ellipsoid leads to an analytical model of the second component. The associated coefficient describes
the deviation of the perceived surface from an ellipsoid; it will be called deformation. Negative
deformations correspond to a more cone-like percept, positive to a more cylindrical surface.

shading. intensity-based and edge-based disparity informations are available (D+E+). In
the case of smooth-shaded disparate images (D+E-), the edges are missing and depth

perception is reduced. When shading is the only cue (D-E-), perceived elongation is much
smaller and almost independent from the displayed elongation (but see Section 4.4).

4.2. Edge-Based Stereo Vetoes Shading

In experiment D-E + , two identical images (no disparity) of fiat-shaded ellipsoids (edges)

were shown. Although shading alone provided some depth information as shown in exper-

iiiient D- E-. the fact that edges occurred at zero disparity was decisive. The perceived

depth did not vary with the elongation suggested by the shading (anid perspective) infornia-

tion and took slightly negative values which, however, were not significantly different from

@4i L2



SHADING WITH STEREO SHADING WITHOUT STEREO

with edges(E +) smooth(E-) smooth(E-) with edqes (E+)

4.0

r= 6______ n=69_____ n=6 _______8W_

2.

0 X-S-'- 1.0

0.5

Figure 3 Perceived surfaces (depth not drawn to scale) Each plot shows the average of 6 - 9 sessions
from three subjects. Perceived depth decreases with the following sequence of cue-combinations:
disparity, edges and shading (D+E+); disparity and shading but no edges (D+E-); si ,ding ....

(D-E-); contradictory disparity and shading (D-E+). The elongation of the displayed objects is
denoted by c.

zero. Since the perceived depth does not change with elongation, we may conclude that
edge-based stereo matching overrides shading. This is an example of the veto-relationship
mentioned in the introduction. This finding is confirmed by an additional experiment where

a small stereo marker was attached to the smooth surface (cf. Section 6.1). Note, however,
that this veto-relationship might occur only in the locally derived depth map. The global
percept of the polyhedral ellipsoid is not flat but convex.

4.3. Intensity-Based Stereo

Depth can still be perceived when no disparate edges are present. This is not surprising, since

@4 .
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STEREO, WITH EDGES D+ E+

z tZ0 3.5" - SMOOTH

.- " NO STEREO, SMOOTH
,WITH D+ E-

-2 
DG.5

> 1.5

0 -

o o 05 1. 2o-.0 4,00.0 __k ____

00

05 1.0 2.0 4.0
0.0

Cr,.,.'. -0.5. C -
W
Q

*Figure 4 Perceived elongation and deformation. top: Depth perception improves as the number of
available cues increases. The significant separation of the second and third curve (smooth shading
with and without disparity) illustrates the influence of disparity information even in the absence
of edges. bottom: Deformation (cf. Figure 2b). In the experiments with disparate edges, the
coefficients are negligible. In all other experiments, the coefficients are negative, i.e., a more conical

9,-. surface is perceived.

shading information was still available. A comparison of the results (Figure 4) for smooth-

shaded images with and without disparity information, however, establishes a significant
contribution of intensity-based disparity information. The curves for D + E- and D-E- are
significantly separated for all elongations except 0.5. We therefore conjecture an intensity-

based stereo mechanism that does not rely on edge information. This effect is almost as
strong as edged-based stereo. A significant smaller depth perception is elicited only for

larger elongations. Note, that for these elongations the ellipsoid does not fit into Panum's
fusional area. One could argue that even in the smooth-shaded images one salient edge is

present, namely the occluding contour. However, this boundary was placed in the zero-
disparity plane in all experiments and therefore does not provide de)th information. Note,
that the self-shadow boundary coincides with the occluding contour since illumination was

from the front. A control experiment with oblique lighting directions confirmed the findings

4.,
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described here (cf. Secti,,u 6.1). For some general remarks on images without zero-crossings,

see Section 5.1.

Preliminary results suggest that intensity-based stereo is vetoed by edge-based stereo,

as is shade from shadiiig. Thus, the two stereo mechanisms appear to be functionally

separated.

4.4. Intensity-Based Stereo Does Not Veto Shading

If stereo matching can be performed without edge information, the depth cues in the ex-
periment with smooth-shaded non-disparate images (D-E-) are contradictory in the sense
that shading suggests some depth whereas stereo does not. A similar contradiction occurs

in flat-shaded non-disparate images when edge-based stereo is considered. It appears that
intensity-based stereo does not veto shading information, as did edge-based stereo in ex-
periment D-E+. The contradiction, however, may be the reason for the saturation in the

perceived depth from shading (Figure 4).

5. Discussion

Problems in vision are usually classified as part of low-level (or "early") vision or part of
high-level vision. Early vision is the set of visual modules that perform the first steps of
recovering physical properties of surfaces from two-dimensional images. High-level vision
deals with the "later" problems of object recognition and shape representation.

One of the most important constraints in early vision for recovering surface proper-
ties is that the physical processes underlying image formaLion are typically smooth. The
smoothness property is captured well by standard regularization and exploited in its al-
gorithms. On the other hand changes of image intensity convey often information about

physical edges in the scene. The location of sharp change in image intensity correspond very
often to depth discontinuities in the scene. Many stereo algorithms use dominant changes
in image intensity as features to compute disparity between corresponding image points. In
order to localize these sharp changes in image intensity zero-crossings in Laplacian filtered

images are commonly used.

The disadvantage of these feature-based stereo algorithms is that only sparse depth data
(along the features) can be computed. In order to test for the ability of human stereo vision

to get more dense depth data by using in addition other features than edges or even use a
complete featureless mechanism (eg., intensity-based stereo) we computed images without
sharp changes in image intensity.

04
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* 5.1. Inages without Zero-Crossings

For thu discussion of intensity-based stereo, the absence of zero-crossings in the Lapla-
clans of images of smooth ellipsoids is crucial. Here, we show that for an orthographically

projected image of a sphere with Lambertian reflection function and parallel illumination,
zero-crossings are missing.

Consider a hemisphere given in cylindrical coordinates by the parametric equation

Z= V1 -r2. (4)

In the special case of a sphere, the surface normal simply equals the radius, i.e.,

n = (r cos o, r sin p, N/1 - r2). (5)

For the illuminant direction I = (0, 0, 1) and the Lambertian reflectance function, we obtain

the huninance profilei I(,') = Io (Il. n) = Io - , , (2,

.- where 1o is a suitable constant, i.e., the image luminance is again a hemisphere. For the

Laplacian of I. we obtain
1 r 2

V 2 1(r) = I"(r) - I'(r) = -lo (7)
r (1 r2)

This is a non-positive function of r, with V 21(0) = 0; i.e., the Laplacian of I has no zero-
crossings.

Unfortunately, this result does not hold for ellipsoids with c 3 1. A similar computation
for an ellipsoid with elongation c yields

",(r) = Io c2)r 2  (8)

which reduces to Equation 6 for c = 1. In Figure 5a, where luminance-profiles are plotted

for the elongations c = 0.5, 1.0, 2.0, and 4.0, it can be seen that for c > 2 the curves are
no longer convex. That is to say that the second derivatives of these profiles in fact have
zero-crossings, and a similar result holds for the Laplacians. However, when filtering with
the Laplacian of a Gaussian or with the difference of two Gaussians is considered, it turns

out that these zero-crossings are insignificant for the elongations used here. Pixel-based
convolutions failed to show the "edges" unequivocally, and even a Gaussian integration
algorithm run on the complete function rather than on the sampled array produced no
zero-crossings beyond tile single-precision truncation error. 'We therefore conclude that the
slight zero-crossings in the unfiltered Laplacian of our luminance profiles do not correspond
to significant edges.

Inlependent from our own work, these natural images may be useful in the study of
the psychophysical relevance of Laplacian zero-crossings. We feel that they are superior to

the gratings or filtered images often used for this purpose.

..
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5.2. Receptor Non-Linearities and Image Interpretation

Since the visual system does not work directly on image intensities but on spatially and1
temporally filtered and compressed (nion-linear) signals, the effects of early visual processlin

'" Kin the retina have to be taken into ac.'ount. Signal compression alone can sigilificanltlv
n*" change image interpretation. Non-linearity in the photoreceptors. for examl)' can lead to

an illusory motion perception for tine-Varying signals that do not entail motion informati ,
(BMilthoff & G6tz 1979). In analogy, these non-linearities could induce e(ge inforination t hut
is not present in smooth-shaded images. An additional source of zer()-crosilgs not present
in our image arrays is the non-linearity of the color monitor. If arbitr;!rv non-linearities
are considered, zero-crossings can be induced in every non-constant image, however smooth
(e.g. by discretization). We thereforc recalibrated the CRT to compensate either for the
CRT non-linearitv only, or for the noxi-linearities of both the CIRT an, l the reItlia.

Retiral non-linearities in b)oth vertl)rates (Naka & t ushton 1966, Dawis 1978) and
invertebrates (Kramer 1975) have been rnodeld by sattirat im-type characteristics of the

form

f(1 ) (9)",..,'I + 1i -

-q where Iu 5 is a constant, given bv the luminance which proiices 50oX of the maximal exci-
tation. Among other thiligs, 1,.5 depends on the adaptation of the eye. We repeated exper-

- iments D E- and D-E-, i.e., those involving smooth-shaded images, with com)ensation
for either imonitor non-ilnearities or the combination ()f ionitor and retina rion-linearities

-w with four different choices of the constant I0,5. The results did n()t show significant differ-
,'-. ences from those obtained without corrections.

Figure 5a shows the luminance profile for an ellipsoid with elongation 4.0. and the
effect of a non-linearity given in Equation 9 fo~r a number ()f choices of 1, r). !T -...

that in our experiments, the presumed receptor noii-linearities tend to cancel t he small zero-
crossings rather than to create new ones. This is furt,. p))rt for our assumiptiol) th.t

• .. edges cannot be extracted from the sinooth-shaded iniages. Mechanisms relying o zero-

crossings 'ithr in the original limage nr ii its first ileliral rei)r('se(ltati() u ca n,,ii( t account f,,r
-- __,._ th lint ens itv- a.,ed stereo )erf(rnicani e f umi, in (mir ('xI)eril('1lits.

6. Relation to Computational Studies

6.1. Edge-Based vs Intensity-Based Stereo

The major finding of this study, as far as single depth moduiles are comc('rned, is tile strength
.-... of depth lperception obtained from inten.sitv-based stere(). Ill conlllttational theory, most

toss

'0p
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<6-.2j,- ,rI' - h.I Ln 7im ce and,( ;mvt lait d hi-i et7Iis..c pro]iles. a. LIi ni ian e r ellipsoids with differ(.nt

elongations. T he f, irtions differ frmi i hose given analytically iu |'F,rilion S only iii a slight

distortion of the x-axis which is due to perspective rather than orthographic projection. Note that

for elongations larger than 2.0, inI', ti s occur. b. Simulated perceived[ brightness profiles for

the ellipsoid with, elongation 1.0 (the one with the pronounced inflections in Figure 5a). Receptor

characteristics are accounted for by the non-linear compression described in Equation 9. The non-

linear compression tends to cancel the inflections (which might give rise to zero-crossings) rather

than to enhance them.
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studiCs have focused on ,,ge-lbase(l stereo algorithms (for review see Poggio & Poggio 1984).
This is due to the overall superiority of edge-based stereo which is confirmed by our finding
that edge-based stereo Lgives a more reliable depth estimate than intensity-based stereo.
However, in the absence of edges and for surface interpolation, gray-level disparities appear

to be more important tlan is usually appreciated.

A number of additional experiments were performed to confirm the involvement of

intensity-based stereo and to study its relationship to edge-based stereo. First. we mea-

sured sinooth-shaded ellipsoids (D+E - , D-E-) with oblique directions of illumination.

Light sources were placed in the tipper left and the lower right in front of the object (-±14'
azimuth and T:13.6' elevation from the viewing direction). The results of these experiments

are depicted in Figure 6. Note that no depth values were determined in the dark (shad-
owed) parts of the images. The results confirm the original finding that intensity-based

"* stereo is present and is much stronger than pure shape-from-shading. Furthermore, when
illumination is from the lower right, stereo prevents depth inversions which occasionally
occurred in the non-disparate images. One has to keep in mind, however, that in the case
of oblique illumination, the self-shadow boundary provides some edge information which
improves ,lepth perception in the stereo images and inhibits it in the non-disparate cases.
Nevertheless, these data show that our original findings were not critically dependent on
the special lighting conditions used.

In a second series of control experiments, we studied the interaction of intensity-based
and edge-based stereo. In contrast to the original measurements with flat-shaded ellipsoids

where edge-information was distributed all over the surface, we placed a small dark ring
(Radius 7.5 mm, Contrast 0.11) at the tip of the ellipsoid. The stereo disparity of this ring

*. could be chosen independently from the disparity of the shaded surface. Three cases were
tested: consistent disparities in ring and shading, no disparities in ring and shadi-'..
disparate ring in front of a non-disparate shaded image. The first two cases (left and right
columns iii Figure 7) confirm the earlier findings of accur, c.'-tion of depth information and
vetoing. Although pure shape from shading yields some depth perception in the periphery.
it is vetoerd in the center by the nio-disparate edge-information.

The third case, a stereo ring inl fir)lt of a ion-disparate smooth image ( middle columns

inl Figure 7) provides infornati( on the meihanisms involved in intensity-based stereo.

One Ipossibility is described by Mlayhew & Frisby ( 1985) who propose a modification of the
Marr-Poggio model (1979) where matches in the two images may occur before edge-detection

is complete. In particular, they discuss peaks in inmage irr'aiice as additional matching
primitives. However, it appears that their experimiental data can be explained with level-
(rather than zero-) crossings in the Laplacian of the image irradiance, or with a shift of the
zero-crossings due to some prior filtering as well (Marr & Hildreth 1980, Hildreth 1983).
Another possibility is that intensity-based stereo does not rely on matching primitives at

all. For example Genne, t (1987) has developed a new intensity-based stereo algorithm that

Am



16

STEREO NO STEREO
Light Source:
Upper Left Lower Right Upper Left Lower Right

U: 4.0

2 2.0 1
LU

Figure ( Perceived surface.q for oblique illumination (l.'ormat ;ts in Figure' 3) Illninalioh fr, ,i 11ii

V. upper left (first and third column) and from the lower right (second and fourt h colu in .i No (d1)h
was measured in the self-shadow regions. The data confirm the relevance of intensitv-hasel st ic,

and show the independence of our findings from the lighting conditions.
1

makes use of a spatially varying linear transformation to relate gray-levels in the two images.

A distributed mechanism of that kind would be especially useful iin surface iiiterl))lati()
when matching primitives are sparse. Unfortunately this algorithm has specific prolleills

xwith the particular inmages use(d in the ).,ychophysic. l experiments. A severe matching error
,,:rs~rs where the intensity profiles of the left an(l right stereo images cro ss. The iitensitv

at this point is the same and the algorithm matches these points leadiml to a /r), .,mall

(isparity at a point where actua lly the maximum disparity shouild 1e expected. T, avoid

such a matching error information other than the imnage intensity ahi, ii has to 1 , takein
into consideration. For example, tho slopes of the intensity profiles ar, different for thi--
points where the image intensities are the same. To use the first (erivative as ani aditi oal

constraint could solve this matching problem without Introducing to() minuch ilse, Into the

system b)ecause the image intensity will still he the primary mat dhing plinitive

iThe computer experiments with I)sY'hphvysical images as shiw; alv I. a ()( (1 ex

aimiple of the fruitful Interacti(n between comnputati(onal th,,, y andll psy'hophysics. Psv
cot)hlysics cannot only be used as an 'xiste,,ce proof for a s(l1tin of a COl)' tti(a Ila

i)rl)leni, but as shown ab)ove, Couil also gitve hits to w,.ak ints il compute-r visiol alge,)
'ithns. This becormes even more char if algerithis art test(,(l wit li illages. t1htt till h, la
vislual systel call easily d a(,;l with iiat itl ill i 1t/*,. liia g, ' t(,'Is: V ;Io I i' -;e ilV iii!

" ""; Y'*e/ -"!. ¢t. '  "" " .. . ....,' "" ,.',,; " ' ,';; ,% ' ,.,..,".7.y.,.,. : ,¢F ". ,' ' .% W. ,'.

" .,_,A. . ., ,. . .... . --L ,. .. .:, ..., . ., , ... -,-A
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enough to compute a correct depth map. Higler order ternis have to be takei into coisid
eration and this is what the human visual systeii does when it lists ilt)re tan on(e cule t

matching primit ive.

The principlhe com ,nent analysis of tiul orig~inal data (Fig res 2 and 4) pro vi les
- first clue as to how lit( usity based stereo might Tvoik. The co efflicients corresp imitmg t()

the depth gradicnt shown in Figure 2d are negative for inte'nsity-based stereo indicating a
so hnti, at cone-like per'pt. In edge-basetd stereo. these coefficie1it are zero. rhis fimlit imi
suggests that in intensty-based stereo, percepti( iS I)(.t i I le. iiity ,f the intensity eak

as WOuild be expected from izitezisit'-t-x'ak-runt(hilng.i) ut riot fronii the dist ri)tted mechaniismii
described above.

The notion of intensity -peak-nuathiimig was tested wit it i disparate hoken ,isplayed i
front of a non-disparate background plrovidhing shading info rmation only. Since th ' pe:ak i.

replaced by a disparate edge token, the loss of global intensity disparities Shldl niot degrade

"." the performance of a peak-matching mechanism. For the elmgation, 1.0 and 2.0. the results

are in fact equal to those obtainedl with full stere.) information: i.e.. one salient st ereo t okell
,-... iil tile ',niter tf the object (together with shape from shadling) is suflicierit to yi(Ild tle

.MleV( l)'I'',.l)t i() i as a C(,,iplhtt, int,nsity stereo pair (Figiirec 7, middle c'thrzm.n-). Howe.ver.

f,,r til .hcnugation 4.0, it -that ita single stereo rnatch in the ceinter of the )bje't is n t

"-t'licict to pro(duce tht. sain,. percept as full iitensity di.,.iritit's. Thc. diff,'rt'nce betwet-.

tiet result s foir tile two sul)j(cts corresiionils to an anldiguity which was e.xperienced by both

observers. For the large elongation, the bject appears to consist (,f a solid base with about
-. half the depth of the ing arid a "glass donie" omto which the ring is drawn. While HAM

adiljisted the depth probe to this 'subj'c tiv'e surmface'. HHB ineasred tile solid base. No
such su)jective surface was per('eiv'd in itt'nsity- based st'.ereo). We ronclude that at least

for large disparities, one single t(ken sich as the litensity peak is riot suffic'iet to yit'l'I

tilt' full deptli percept. Rather. tht (lie ,rhi t tili tI ti..parity info rmatioin seIiiS to 1,. ,,i,,

itbally.

C-e-1 = riis ( 19'4S) makes 'xpliit use if binio'ular shading Idifferen't's for tlt' interlx)i,,.-,i
a ' ,if surfaces betwen gootI liiath's (i.e.. bet \w,.'tii etlgf-e). 'nfortunately, his m,)l.el iS Ill,,

,dire''tlv comiiparalh' to our st ithv for the following me.astmi<: First. the infoiniati(,m that

Grimlistiii's algorithlmi revt'rs fiot shalii is tile sirfa'e ')ri'ntatiton aloing z,.r') it'rtss;ig.

-I oil! ,'Xl)eril(int with siooth ellipsoids. the only zert)-(t'r)ssing (',ntr is ti e ,)ccriolimi
'(tmit )r of tli' object where t' snirface o)iemitat urn dt (es iot dt(1 eim I oh t li' t)tal t'lorigat 101 if

ithe ,bje' it is aliwayi perlteIntlit'ular to tll (i i;ge lie. S-c,'i) d. Ctinilsozi's mmidel requires
a serdlar ctoimlponnt ii til, refl''ta' ( t fliit ion ,fh ti , libje't 'itil u,)w our experiments

('xplored only pimly Lambertian surfaces. We shall, howevrr. include diffe'reit reflectance

functions and ligyhting conditions in futtire studies. At any rate, it is an iitterest Ing result

that human observers are aie toi ev;al' ut, bintc'ular shading informatio)n in th( Lambiwrtian
case. From this we maV conclude t,iat a nit'chanismn ,ifftr'ent fit)i the en' propos,'tl b

"- ,.-' Grimson is- involved.

.%
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Figure 7 Perceived .4urfares for s-Piooth shading combinied upith a .47all !ereo tok~en (Forinat as InI
Fiizi re 31 Ed(ge-based stereo information (acl hae-fro haIn ( ght i n). Wheti O1w

tokeri ha t ie ( (rre(c di spar? v. in? en.sIt based stereod(oes not fur ther inprove the Percept, at leatt
in smiall vlorigations. For the elongation 41, the data are aflibiuOus. ( Io r further di~cussloii. "(ec

£6.2. Shape from Shading

I Iew~ of puire shiapte from shading is stutdied in ow. experimnt D- E - Ikeuchi &- Horn
I P)* 1) pri uV IC a compuita it ional thliei rI of 4ihape front shading. Their algoritin starts olit

fri 1i thlei t cidilI igco nt nir of a givenl object and sticcessively comiijites first the surface
ii bt 1,1t loll and( subs~equently thle depth withbin the surface. As ail example, Ikeuchi & Horn

Iii the, limaie of a spher. with hi Lminert ian reflectance function. Illumtinated by parallel
Ii dit flo no thle viewing direction I ins example can 1w directly cotmparetd to mur exiWenmen-1t.

rA, in 1w een fron their Figure 15, the algorithmn coniverges fasttet in the vivinity of
Ow (nil 11111ng (( int e. I -. In thr periflhrr , f thew sphere. wlie'las errors prsilst fin- somen

i at ioirs InI th lielei mht e 11ti igly tihe santef lepemidenlev (f the rFror o il thf pi ' usit iml Is

f. Ind IIt om "I)( I ittl(iLit' ;imuil tl4 ;m algoi lai 1 z ilz.tit1 111~t i a siii:1il %%;I\ ws l(



~~ human observer does. Note, howvever, that the distortioni of shape ill their algorithmn (lepen(ls

on the regularization parameter A. For a large v-alue of A. which would1 be appropriate for

noisy image data, the smoothing of the surface wold~ lead to a considerable und~erest iniat i ut

of depth. Conversely, for smiall,%values of A the siiiootliiiig would be less. The iterative scheme

* . bocomes unstable, however, if the value of A is redulced too much. In any case, it wouild be

more desirable to compare the hiuman performance with a shape from shading algorithmi
which does not dlepend so strongly on at single parameter. For an approach which avoids

smoothing introduced by a regularizationi terni see Horn and Brooks (1985).

% ~The algorithm of Ikeuchi & Horn shows also other types of errors wheni the require(!

knowledge on the light source position anld the reflectance properties of the surface are not

known exactly. The types of errors reported from numierical experiments are asvii-nnietric

distortions for false assumptions of the light source p~osition and ov,'rvstimnation of depthi
when false reflectance functions are assumed. In our psychophysical studies, the main error,,

wvere of different types. As can be seen from Figures 2- and 3, errors included underestimation1

of elongation and the deformation of the ellipsoidal shape to a more cone-like percept.

0: Asymmetric deformations as reported by Ikeuchi & Horn did not occur even for the obliquely

illuminated objects (Figure 6). Note, however, the asymmetry in shape perception for the

two light source positions (uipper left and lower right). The perceived surface for the lower

right postion of the light source is neither convex nor concave. Interestingly, even for such

simple shapes like ellipsoids observers seemingly neclect to force global consistency (RI.
Wildes. pers. communication).

6.3. How Useful is Shading as a Cue for Depth?

Todd L Nlingolla (1983. 1986) usedl ;sychophysical techniques to iniv'estigat(' 11ow % ~
alyeshape by use, of Shading cues. According to their rresults, the Iiiiiian observer makes

errors up to 50(X in estinmatinig shape from - shading. -. similar result has beeni report4f(I

bv Barrow & Tenenbaunm ( 1978), showinig that shiadinig o)f a cylindlrical surface can devI&t,-

siistat jllyfrom natumral shadhing before a chanige inI the p~erc'eived shape call be detected.

This is well li line with iior p)sycho)physic il fiuidiiigs wvhiich suggest that iion-d(isparate shadinig

I"it () cte to( shiape. It is, l1 wmver, in c n)iti last to t lit, Hit uit ion o)f artists who utse shading

as.- ;t primlarvN tool to depict oI)jects III depth.

Is it p(w)5I1)le that we are rl -t asking the( right (I i(5t i wheii we try to analyze shape with

Ipsychk(phvsi('al tool,"? ( bvionslv everylbA dv-all describe the sh.:pe of a v'ase ill a photograph
evexi with nit amiv textutre onl it. lit p~riniciple. shia hug c-al providle onily Informnat ion about

surlface orient at ion and not abso1 ite (dept h ineastirienents. But as Todd and MIinl da have

-iowii. a longm t Iatllilig p1 diast Is rc(Iiiired( fo)r silbject" to pinit )lit the14 surlface lmirlual o)it

1uu1pIN 11 drd I igil I,' Aiid cvc'ii ;tft.'i tite tuiiliig pjiaW' Stljcct5 ma1.ke a lot of e roms.

A~$ pit-v lncats11lcllew (,f suIrface slanlt aild tilt (1()(eS not seeli to be liect'ssftrN for hiumnalals

- S SIt
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to ,l,.crile shape. If we (1o not use slant of surfaces (2 D sket,'h) it S,,,.n i likly that w.

us ,,r cues to construct a depth-map of an object.

hi the study reported here, we tried to answer this question by measuring the lerc('iv,,

. , ,1irectlv with a stereoscopically viewed depth probe. This seems to be a much siniplet

- f,,r the subjects and indeed we did riot need a long training phase to obtain consistent
1
eVl't ,iie'-uireilv.nts. Surprisingly, this nith(xi worked for shading cues alone (no ,lislii

. Hnot obvious, since it involves a cross comparison of supl)()sedly more or less

'I:;,'I, lhnt modules and also comparison of local (depth l'prob) versus ghbal (shalting)
iif(,rat Ion. On the other hand. our depth probe requires imnutar viewing even for non

ti-parat,. images (pure shape from shading). The ritlry between slape from shading anl

initcllsitv biase( stereo (cf. Section 4.4) may be partly ',.5ponsible for the poor shape from

sliat lin1u ierformance. To avoi(i this we are currently thtveloping a paradigm to nwa,,mo

",11tw fi,,ll .dhaing monocularIN. With this paradigni we can analyze also other cues. ,g.
:,-.'. textut, gradients and occluding contours which would show similar problems with a lo;,l

tcrtI i(1tipth probe.

6.4. Interaction of Depth Modules

(tIlcr, t, prel'tti(min, as to what types ,f interactions should ,iccur !,etweeii diffei nt d(1l(th

c'I,' art' still diffictilt t') olibtmt from iompiutational studies. Ther, o'ore. we hope tlit p.y
~ ,'hhpIN('ical sttilies will in turn pro)vide useful hints for computatioxnal investigatioins as to

how aii integration (if depth information could work. In this section, we try to relate ou

nt t,,Ilt, to ;omv of the emerging concepts of visual integration.

Accumulatio i is a simple type of interaction that can be implemented in a number

5 ~ (f liffereit ways. Consider for examl)le Marr's 2 1 D-sketch (Marr & Nishihara 1978. Marr
1 (P2 IInformiation on surface orientation can be collected from different nodiules such as

slihii. texttre density- and deformation-gradient), or 3D interpretations of line drawings.

It ,,erms natural that performance improves when more information is available.

Siimilair r-sults shoiuld be obtained with the approach of regularization theory (,Poggio et

iad. 19tj,', T )riginally introduced as a unified theory of a number of different r(xules in earlv

. -.vi n it i- (p I;llv -inted to mdteIl tle integration of different modules by joint optlimizatiOn

4,f ,ff,,it -,'ts of data (Terz jitlos 1986). Depending on the choice of the particular loss

fti;nit i,-. tHi, d,crihed interactio ty. p of accumulation and co operativity are likely to
w ,(,'lIr IlII fact, it should he p"sibI' to infr tie form of tle niininiized functional from the

.* l,;, rit,.,l;,I ty.le of sumurniat io fo dt psycl'h, hysically bet wt'.ei the ilvhyd iiodtl,.

i. N Ir,. asvxim: et r ic" types (f interact io,. such as -vetti tn 1ti-alibiiatioii. can be eXlectedl

fri, ,i l'ils of Surface jilt e.rp ,lat ion (Griinoii 1982) that start witi r'liaile depti i1f inina

i' .? t ~,i typically ,,titai ied fro mi disparate edge.s aid eilohy ot her mtlodtles, escially slimhig.
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/ .to i n1'ov, the i terpol ic n 14(ctweenl the sites oif the edgc " (R. Wildes. pers coniliimica,-
101o rot). Til coullination " Fdgc and shading infor(hiation i. thus similar to th,' coil)IT, tU)l

of o,,chuting contours an( i shad Ing in Ikeuchi &t h rn ( 19S1 ). A similar relatioishiIp ha., be(en

Piasstenied 1),,tween edge-1); -vd sriereo and binocular shading ( intensity-hased stervo) (GriusrOi
19S21.

Recently. Poggio (19S5) proposed another fornalism for the integration of differenl

depth i,odiles. I)ase( oil a prl)bahilistic approach to optimization I)y non-convex fiuct ioials.

(Narroquin 198,4. Narroquin et al. 198G). The advantage of this coupled Markor Random

Fields approach over regularization theo-ry lies in the pssilility of simultaneous segien-

tation arid (piecewise) smoothiung f the image. As far as the experinents discussed lhre
are concerned. the results shold iit he significantly different frlom those of regularizatiON.

-lwever. if other cues such as occlusion are considtered. inore complex tVles of intcractlouis

are to I)e expected fr( l the coupled Tarkv Random Fiel( approach.
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